GenAMap: Visualization strategies for structured association mapping

You are here

TitleGenAMap: Visualization strategies for structured association mapping
Publication TypeConference Paper
Year of Publication2011
AuthorsCurtis, RE, Kinnaird, P, Xing, EP
Conference Name2011 IEEE Symposium on Biological Data Visualization (BioVis)2011 IEEE Symposium on Biological Data Visualization (BioVis).
Conference LocationProvidence, RI, USA
ISBN Number978-1-4673-0003-2
Accession Number12408400
KeywordsAlgorithm design and analysis, Bioinformatics, Data visualization, Gene expression, Genomics, Heating

Association mapping studies promise to link DNA mutations to gene expression data, possibly leading to innovative treatments for diseases. One challenge in large-scale association mapping studies is exploring the results of the computational analysis to find relevant and interesting associations. Although many association mapping studies find associations from a genome-wide collection of genomic data to hundreds or thousands of traits, current visualization software only allow these associations to be explored one trait at a time. The inability to explore the association of a genomic location to multiple traits hides the inherent interaction between traits in the analysis. Additionally, researchers must rely on collections of in-house scripts and multiple tools to perform an analysis, adding time and effort to find interesting associations. In this paper, we present a novel visual analytics system called GenAMap. GenAMap replaces the time-consuming analysis of large-scale association mapping studies with exploratory visualization tools that give geneticists an overview of the data and lead them to relevant information. We present the results of a preliminary evaluation that validated our basic approach.

Refereed DesignationUnknown